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Abstract 

Wildfires in the mid-elevation forests of California’s Sierra Nevada mountain range have 
increased in size and intensity over the past half-century due to higher fuel loads from a century 
of fire suppression, together with longer fire seasons. The resulting large wildfires have produced 
larger high-severity patches (with near-complete tree mortality) than was historically typical in the 
Sierra Nevada. As a result, post-fire forest tree regeneration has become weak in many areas, 
leading forest managers to invest in tree planting as a strategy to hasten forest recovery after fire. 
Despite the critical importance of tree planting for forest recovery, it remains unclear how 
environmental variation influences active tree planting success relative to passive natural tree 
regeneration. To address this gap, we worked with the U.S. Forest Service to ask how variation in 
the abiotic environment (e.g., temperature, precipitation, light intensity, etc.), dispersal, and 
competition from shrubs impact tree planting success in the face of passive natural regeneration 
failure after forest fires throughout the Sierra Nevada. We report two main findings from this 
research. First, passive natural regeneration is lowest at the hottest, driest sites, and active tree 
planting can provide a moderate boost to forest recovery in these sites. Second, we found that the 
timing of tree planting matters, and that in some circumstances planting in the first year after 
wildfire is advantageous, but we also found that that the importance of planting timing depends on 
the level of competition from shrubs. In places where shrub competition is intense, tree planting is 
much more successful if planting occurs during the year immediately following a fire (the soonest 
that it is usually practical to plant) and results in greater establishment of pine species. In contrast, 
in places where shrub competition is weak, delaying tree planting until some shrubs establish can 
facilitate tree seedling survival, perhaps by providing shelter from harsh conditions. Given the 
complex environmental controls of natural recruitment and planting success, we developed a web-
based tool, using our results, that allows forest managers to identify high-priority active planting 
locations given the expected effects of tree planting. 

Objectives 
Our objectives were to measure tree seedling recruitment, growth, and survival in severely 

burned areas of yellow-pine and mixed-conifer forests in California’s Sierra Nevada mountains, 
and to understand the drivers of its variation both in tree planting treatment areas, and in adjacent 
untreated areas. We addressed the following specific questions, as posed in our proposal for this 
project: 
 

1) What is the optimal time to plant seedlings into severely burned areas? 
2) How strongly does environmental variation influence natural and planted 

seedling regeneration? 
3) How do tree planting methods (early planting, late planting, or no planting) and 

environmental conditions influence the species composition of re-establishing 
forests? 

 
We successfully met these objectives and address each in greater detail below. Our study produced 
a dataset describing tree seedling density, growth, and survival in in tree plantings after five fires, 
comprising 30–50, 11 m radius plots per fire paired across planted and adjacent unplanted areas. 
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Using these data, we created the web-based Post-fire Reforestation Success Estimation Tool 
(PReSET) to help forest managers predict planting success and prioritize planting locations 
(https://reforestation.shinyapps.io/preset/). 

The project addressed the JFSP task statements for multiple Research Needs. To address 
Research Need 1, we tested relationships between the immediate post-fire environment (surviving 
tree species composition and location, topographic and site attributes), and the success of recovery 
actions (tree planting) by measuring tree planting effectiveness relative to background 
regeneration. We addressed Research Need 2, on the relationship between phasing of post-fire 
actions (tree planting and associated actions) and desired outcomes of tree density and species 
composition, by comparing the outcome of tree planting treatments implemented at different times 
after fire. The research results and the decision tool (PReSET) produced through this project also 
respond to Research Need 4 by assessing the relative effectiveness of alternative planting timing 
and by suggesting where these treatments should be prioritized on the landscape. 

Background 
 Climate change is restructuring the controls on species distributions and species dominance 
in complex ways, resulting in ecosystems that operate outside of their historic range of variation 
(Walther et al. 2005, Parmesan 2006, Kelly and Goulden 2008, Bertrand et al. 2011, Stanton-
Geddes et al. 2012, Zhu et al. 2012, Williams and Jackson 2016, Fei et al. 2017). The consequences 
of these changes range from benign to dramatic declines of many critical ecosystem services (Shaw 
et al. 2011, Carter 2013, Lee et al. 2015). Forests, especially, provide many ecosystem services 
such as timber, water filtration, fire regulation, and recreation (Krieger 2001, García-Nieto et al. 
2013). While climate change can alter the distribution of species, range shifts and type conversions 
are often accelerated by anthropogenic changes to normal disturbance regimes (Vanderwel and 
Purves 2014, Serra-Diaz et al. 2015, Thom et al. 2017). In temperate regions, where forests provide 
$900 billion per year of ecosystem services (Costanza et al. 1997), many biomes shift between 
forests, savannas, shrublands, and grasslands depending on climate and the frequency and intensity 
of disturbance (Bond et al. 2005, Bond and Keeley 2005, Bowman et al. 2009, Baudena et al. 2014, 
Lasslop et al. 2016). With changes in climate and disturbance regimes, shifts in forest biomes may 
result in steep losses of critical ecosystem services such as water provisioning and carbon storage 
(Núñez et al. 2006, Adams 2013, Thom and Seidl 2016, Sutherland et al. 2016). Given the rapid 
pace of human-caused environmental change, we need data to understand how climate and 
disturbance drive environmental change and ultimately how management can reduce losses in 
ecosystem services. In this study, we collected and analyzed field data from five California 
wildfires to evaluate factors influencing the success of post-wildfire tree planting, one of the most 
widespread and economically and ecologically important management interventions in western 
North America. 

In forests adapted to low intensity disturbance such as yellow pine and mixed conifer 
forests of the North American Mediterranean-zone, extreme disturbance can lead to tree 
regeneration failure resulting in the conversion of forests to shrubland and a loss of ecosystem 
services (e.g., timber production, recreation, and cultural services; Safford and Stevens 2017). In 
this system, type conversion to shrubland often occurs as a result of fires that are now on average 
seven times larger in extent than the historical average and burn with much higher severity 
(Lenihan et al. 2008, Miller et al. 2009, Westerling et al. 2011, Safford et al. 2012, Miller and 
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Safford 2012, Safford and Stevens 2017), resulting in fewer surviving trees to produce seeds, 
which must then disperse much farther to support recruitment (Welch et al. 2016, Safford and 
Stevens 2017, Shive et al. 2018). Furthermore, while dispersal limitation can cause forest 
regeneration failure, forest regeneration can also be disrupted by changes in climatic averages and 
extremes (Young et al. 2019, Davis et al. 2019, Rodman et al. 2020), which can increase seedling 
water stress as temperatures increase and extreme weather becomes more common (Swain et al. 
2018). To counter dispersal limitation and early establishment stress, forest managers often plant 
trees to overcome forest regeneration failure (Helms, J. A., and J. C. Tappeiner 1996, Brown et al. 
2004). Tree planting is not consistently successful, however, and with the growth of exceptionally 
large fires, the amount of burned area that can be replanted is often limited by funding and other 
constraints (North et al. 2019). Because both passive tree regeneration and active tree planting 
outcomes are determined by complex and interacting processes, including seed dispersal, early 
abiotic stress, and competition from shrubs, scientists and managers have struggled to reliably 
predict outcomes (Davis et al. 2018). Identifying the mechanisms that control both passive natural 
tree regeneration and the success of active planting treatments is critical for sustainable and cost-
effective forest management. 
 Patterns in seedling recruitment in burned forest areas can provide clues to where planting 
may be most efficient. In mixed conifer forests, tree regeneration in large, high-severity patches is 
often limited by low seed availability, since surviving trees are the main sources of seed. Dispersal 
from the patch edge drops to low levels within 50–100m (Irvine et al. 2009, Welch et al. 2016, 
Shive et al. 2018). When dispersal does not limit regeneration, seedling establishment can be 
limited by environmental factors that result in water stress, either by limiting precipitation or 
elevating heat load (Irvine et al. 2009, Welch et al. 2016, Shive et al. 2018). Furthermore, 
competition from shrubs can be harmful—competing for resources with tree seedlings in less 
stressful conditions—or beneficial—facilitating seedling survival by ameliorating harsh 
conditions (Callaway 1992, Irvine et al. 2009). Predicting how trees and shrubs will respond to the 
environment is difficult because of the complex interacting nature of environmental stresses and 
resources. In particular, greater water availability generally increases seedling establishment, but 
high productivity in wetter areas also produces intense competition from shrubs. Alternatively, in 
stressful, water-limited or low-nutrient environments, tree seedlings establish poorly, but seedling 
establishment may be aided by neighboring shrubs which provide shade, decrease water loss from 
wind, and stabilize soil. Therefore, active tree planting may be a priority in sites with intermediate 
environmental stress: sufficient stress such that natural regeneration is limited, but not so much 
stress that planted trees would also die (White and Long 2019).  

In addition, conifer regeneration in mid-elevations of the Sierra Nevada has shifted in 
species composition (Welch et al. 2016). Historically, yellow-pine and mixed-conifer forests were 
dominated by fire-tolerant and shade-intolerant Pinus species such as Pinus ponderosa (ponderosa 
pine), and Pinus jeffreyi, (Jeffrey pine), which were well adapted to the historical fire regime 
(Welch et al. 2016, Safford and Stevens 2017). Conversely, fire-intolerant and shade-adapted 
species, such as Abies concolor (white fir), Abies magnifica (red fir), Pseudotsuga menziesii 
(Douglas fir), and Calocedrus decurrens (incense cedar), are increasing in representation as fire 
suppression has favored tree species with these traits. Tree planting practices typically seek to 
restore historically dominant species and where they succeed, they may shift tree composition 
toward its more historical, pine-dominated composition. Understanding how environmental 
variation and planting timing guides compositional development will provide managers with more 
detailed information to help guide planting efforts.   
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 To address our objectives, we collected tree density data from post-fire tree plantings in 
severely burned patches across five wildfires in the Sierra Nevada mountain range. We used the 
data to ask how distance from a disperser, environmental variation (e.g., temperature, precipitation, 
solar radiation, elevation, etc.), and competition interact with seedling planting to determine tree 
density and thus recovery outcomes. Specifically, we asked:  

1. How do the outcomes of passive natural regeneration and active reforestation vary 
along environmental gradients, including variation in climate, intensity of 
competition, dispersal, and topography? 

2. Under what environmental conditions is active reforestation most likely to be 
effective and necessary for facilitating post-disturbance recovery, and how does this 
change with the timing of planting? 

3. How does environmental variation and the timing of planting affect tree seedling 
composition, especially with respect to shade-tolerant and shade-intolerant conifer 
species? 
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Materials and Methods 
 We conducted this study in the yellow-pine and mixed-conifer forests (hereafter “mixed 
conifer forest”) of the Sierra Nevada mountain range in California, USA (Safford and Stevens 
2017). The Sierra Nevada provides major ecosystem services to California in the form of timber, 
biofuels, water supply and filtration, carbon sequestration, and recreation (Shaw et al. 2011). 
Mixed conifer forest falls within 300 and 2400m elevation in the northern range and 1200 to 2800m 
in the southern range. Historically, the forest was dominated by ponderosa pine and Jeffrey pine, 
with sugar pine, white fir, and incense cedar as subdominants and was characterized primarily by 
low-density forests and woodlands (Safford and Stevens 2017), while wetter, cooler areas tended 
to support higher tree density (Stephens et al. 2020). Historically, these forests burned every 11–
16 years with an average burn size of 200–400 ha. Starting in the early 20th century, fire 
suppression reduced fire frequency by 65–100% (Safford and Water 2014, Safford and Stevens 
2017). This decrease in frequent fire led to a large (~250%) increase in stem density and a buildup 
of fuels (Safford and Stevens 2017). Higher fuel loads and greater fuel continuity, together with 
warming temperature and longer snow-free seasons, supported an increased average fire size of 
1400 ha and a five-fold increase in high-severity fire (Safford and Stevens 2017). The forest type 
experiences a Mediterranean climate, with wet winters and dry summers. As in all mountain 
ranges, temperature and precipitation vary at relatively fine scales, driven largely by topography 
and elevation. 
  We compared planted and unplanted recovering forest land after severe forest fire. We 
sampled plots in five fires, all on land managed by the U.S. Forest Service (Fig. 1). Fires occurred 
between 1994-2008 and planting had occurred 1–3 years after fire (Table 1). We selected fires and 
planting sites within these age ranges so that (a) planting outcomes had at least 7 years to manifest 
and (b) records and/or institutional knowledge of past management were still reliable. We 
additionally selected fires that contained comparable planted and unplanted areas arranged along 

Fire Year Elevation 
(m) 

Years Planted 
Postfire 

 Cottonwood 1994 2250–2425 2, 3 
Power 2004 1070–1735 3 

Moonlight/Antelope 2007 1400–2000 1, 3 
American River 2008 1630–2000 1, 2 

Piute 2008 2100–2475 2, 3 

Table 1. Wildfires included in 
the study with year, elevation 
range, and number of years 
after the fire that they were 
planted. 
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gradients in elevation and/or solar exposure (topographic aspect) that had received the same post-
fire management (other than plantation management; see below in this section). Because passive 
natural regeneration is generally very weak (and thus active tree planting very important for forest 
recovery) far from seed sources (Welch et al. 2016), we prioritized data collection from planted 
areas within 150 m of seed sources in order to understand patterns and inform planting decisions 
in the more ambiguous zone where seed sources are present. For this purpose, we identified 
potential “seed source” distance coarsely by calculating the distance to the nearest non-high-
severity patch of the fire (using USFS fire severity data; USDA Forest Service 2015) or the 
perimeter of the fire. We then measured actual seed source distance in the field; it sometimes 
differed substantially from the value inferred from severity maps, resulting in a sample dominated 
by plots with nearby seed sources but also including plots far from seed sources. 

Study areas ranged in elevation from 1070 to 2475m, slope from 5 to 35%, average annual 
temperature from 6 to 13 °C, normal annual precipitation from 435 to 1815mm, and cloud-free 

Figure 1. Locations of fires surveyed throughout the Sierra Nevada (a). Layout of paired plots along 
planting boundaries throughout a fire (b).  

a) b) 
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solar insolation in from 300 to 9900 Wh m-2 day-1. Our focal planting sites were planted with 
between 250 and 1200 trees per hectare (mean: 650), with trees characteristic of the site, typically 
including primarily ponderosa pine and Jeffrey pine, and sometimes also including sugar pine, 
Douglas-fir, white fir, and incense cedar, the latter four usually a small proportion of the planted 
trees. 

Some sites included post-fire (pre-planting) salvage logging, pre- and/or post-fire reduction 
in shrub cover using chemical (herbicide) and/or mechanical (grubbing) methods, and/or 
replanting two to six years after initial planting where the original seedlings had died. Planted 
seedlings were nursery-grown and generally planted as one-year-old bareroot or container stock 
by hand crews using hoedads. 
 It was often not possible to distinguish planted from naturally recruiting tree seedlings in 
the field; therefore, we estimated the effects of tree planting treatments on the density of 
established tree seedlings by comparing planted and unplanted paired plots. To establish pairs, we 
identified high-severity areas within each fire using fire severity maps (USDA Forest Service 
2015) and later confirmed that plots had experienced > 75% tree mortality by basal area in the 
field. We used the Forest Service Activities Tracking System (FACTS; USDA Forest Service 
2018) spatial database of treatments, corroborated with information from forest managers when 
unclear, to locate the boundaries of planting treatments and other post-fire management. We 
restricted sampling to (a) high-severity burn areas, and (b) boundaries between planted and 
unplanted areas that were both forested prior to fire (as evidenced initially by aerial imagery and 
later confirmed in the field by presence of snags, logs, and/or stumps), did not coincide with any 
prominent natural features (e.g., ridgelines or transitions in substrate type), and experienced the 
same post-fire management (other than plantation-related management) according to the FACTS 
database. While planting unit boundaries often coincide with natural features (e.g., a fire severity 
boundary or transition to steep slope), we identified cases where boundaries were set arbitrarily 
(e.g., due to funding limitations, road access, or avoidance of cultural resources) and sampled along 
these non-ecological boundaries. To establish sampling points, we used a computer program to 
randomly generate pairs of plots along these boundaries separated by at least 50 m and usually 
more than 100 m.  Within pairs, plots were located 50 to 75 m on either side of the planting unit 
boundary to buffer against edge effects and imprecise planting boundaries. In the field, we 
arbitrarily shifted plot locations up to 90 m parallel to the planting unit boundary if necessary to 
avoid anomalous sites (e.g., rocky outcrops).  
 Within each 11.3 m radius plot, we located and recorded every tree seedling > 25 cm tall 
and identified each to species, with the exception that ponderosa and Jeffrey pine seedlings were 
both recorded as “yellow pine” because they are often not feasible to distinguish as seedlings. If 
there were > 30 seedlings of a species (or yellow pine group), we instead sampled the seedlings of 
that species along a 22.6 m-long, 2 m-wide north-south transect through the middle of the plot, 
and we later estimated whole-plot density by multiplying by 8.87. We computed seedling densities 
based on the slope-area of the plot (as opposed to the horizontal area) because it may more closely 
reflect the growing area available to short-statured vegetation. To evaluate planting success, we 
specifically considered the density of the planted tree species (as opposed to all species present) 
in the paired planted and unplanted plots. In mixed-conifer forest, managers often aim to increase 
stocking density to 494 seedlings/ha (200 seedlings/acre) (Silvicultural Forest Handbook R5, 
USDA 1989). In addition, we visually estimated the percent of each plot covered by shrubs and 
average shrub height. We also measured litter and duff depth at four predetermined locations in 
each plot (and averaged them to obtain a plot-level average). To evaluate dispersal, we measured 
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the distance to the nearest seed sources (group of at least six reproductive conifers) using a laser 
rangefinder. 

For each plot, we computed and/or extracted geophysical and climatic variables. We 
obtained elevation from 1 arcsecond (~30 m) resolution USGS 3DEP digital elevation models 
(DEMs) (USGS 2018), and we used these DEMs to compute slope (R package “raster”; Hijmans 
et al. 2020), topographic position index within a 2 km radius (R package “spatialEco”; Evans et 
al. 2020), topographic water index (R package “dynamtopmodel”; Metcalfe and Freer 2018) and 
cloud-free incoming shortwave solar radiation on the solstices (GRASS GIS function r.sun; 
Hofierka and Suri 2002). We also computed statistically downscaled mean annual daily minimum, 
daily maximum, and daily mean temperature for the 1981-2010 reference period at the ~30 m 
resolution of the USGS DEM based on TopoWx temperature layers (Oyler et al. 2015) at 800 m 
resolution. We performed downscaling using a modified gradient-inverse distance squared (GIDS) 
method (Nalder and Wein 1998) as implemented by Flint and Flint (2012), using a 4 km search 
radius and excluding latitude and longitude predictors to minimize artifacts associated with 
downscaling a grid (as opposed to interpolating between weather stations, the original GIDS 
application). Finally, we also obtained total annual precipitation data at 800 m resolution from the 
PRISM dataset (PRISM Climate Group 2019). We extracted all geophysical and climatic data at 
plot locations using bilinear interpolation.   
 
Analysis 
 To evaluate the effect of environmental variation and timing of planting on establishment 
success, we tested predictor variables using a linear mixed effects model using the package ‘lme4’ 

Predictors Interactions 
Mean Annual Temperature Predictor * Planted 
Mean Minimum Annual Temperature Predictor * # of Years After Fire * Planted 
Mean Maximum Annual Temperature Mean Annual Temp. * Summer Solar Insolation 
Normal Annual Precipitation Normal Annual Precipitation * Summer Solar Insolation  
 Summer Solar Insolation Mean Annual Temp. * Normal Annual Precipitation 
%Forb Cover Min. Annual Temp. * Normal Annual Precipitation 
%Grasses Cover Max. Annual Temp. * Normal Annual Precipitation 
%Shrubs Cover Min. Annual Temp. * Normal Annual Precipitation * Summer Solar 

Insolation 
%Overstory Cover Total Water Index * Normal Annual Precipitation 
Average Shrub Height Total Water Index * Summer Solar Insolation + Litter 
Log10 Distance to Nearest Seed Source Total Water Index * Elevation 
Topographic Position Index Topographic Position Index * Normal Annual Precipitation 
Topographic Water Index Topographic Position Index * Min. Annual Temp. 
Elevation Topographic Position Index * Elevation 
Litter + Duff Depth 

 

Coarse Woody Debris 
 

Planting 
 

# Years After Fire Planted 
 

Table 2. Predictors included in the global model and biologically meaningful interactions evaluated for 
improved model fit. 
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(Bates et al. 2019) in the statistical analysis program ‘R’ (R Core Team 2016). Because we have 
many possible predictors and are interested in potential interactions, we chose a modified 
backward-forward model-building approach focusing first on testing for interactions between 
single variable predictors and planting, and then testing for a pre-determined set of biologically 
meaningful two-way and three-way interactions between predictors (e.g., interaction between 
temperature and precipitation to represent the trade-off between water inputs and 
evapotranspiration; Table 2). To do this, we started with a global model that included all predictor 
variables and sequentially compared models with and without an interaction with planting for each 
predictor. Models were selected by comparing AIC; if AIC values for two models did not differ 
by at least 2, the simpler model was selected; otherwise, the model with the lowest AIC was 
selected. Only predictor-planting interactions that improved the model were retained. Because the 
outcome of competition can depend on priority effects (Fukami 2015), for competition-related 
predictors, we also tested for a three-way interaction between planting and the timing of planting. 
If an interaction between predictors improved the model, it was retained, and we subsequently 
compared models with and without a 3-way predictor-predictor-planting interaction. Finally, 
predictors were sequentially dropped from the model if they did not improve model fit by 2 AIC, 
since such predictors do not improve model performance much, and including them is likely to 
lead to overfitting the data. To meet model assumptions of residual normality and 
homoscedasticity, we added to the response variable (seedling density) the lowest non-zero density 
value observed and then transformed it using a natural logarithm (Ives 2015). Because the 
likelihood of dispersal decays exponentially with distance we used the base-10 logarithm of seed 
distance to approximate the rate of seed rain based on distance. To account for the nested structure 
of our data, we included a random intercept for each fire and nested pair ID within fire. 
 To evaluate the effect of environmental variation and tree planting on shade-tolerant versus 
shade-intolerant tree species composition, we used a generalized linear mixed effects model (Bates 

Predictor β std er p Table 3. Model estimates, 
standard error, and p-value 
for each term in the final 
model predicting tree 
density. Continuous 
predictors were centered 
and standardized prior to 
fitting models to facilitate 
comparison of coefficients. 

β0 4.941 0.335 <0.00000 
Topographic Position Index -0.198 0.072 0.00694 
Elevation 0.369 0.132 0.04212 
%Shrubs 0.990 0.342 0.00430 
Year Planted -0.350 0.117 0.00337 
Planting -1.750 0.374 0.00001 
Min. Annual Temp. 0.087 0.146 0.58114 
Normal Annual Precipitation 0.082 0.148 0.59078 
Seed Source -0.232 0.064 0.00041 
Litter + Duff Depth 0.256 0.067 0.00019 
Topographic Position Index:Elevation -0.183 0.062 0.00394 
%Shrubs:Year Planted -0.455 0.133 0.00078 
%Shrubs:Planting -1.155 0.474 0.01588 
Year Planted:Planting 0.403 0.148 0.00764 
%Shrubs:Year Planted:Planting 0.429 0.183 0.02016 
Min. Annual Temp.:Normal Annual 
Precipitation 

1.160 0.180 <0.00000 
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et al. 2019) with a binomial distribution to estimate the proportion of seedlings within each plot 
that represented shade-intolerant species (i.e., P. ponderosa, P. jeffreyi, and P. lambertiana) or 
shade-tolerant species (i.e., A. concolor, A. magnifica, P. menziesii, and C. decurrens). We 
followed the same model selection procedure as above to determine which predictor variables best 
predicted shade-tolerant versus shade-intolerant species. To capture overall community 
differences, we used non-metric multidimensional scaling (NMDS) to show the compositional 
differences that develop with tree planting. Because P. ponderosa and P. jeffreyi were difficult to 
distinguish from each other in the field, we grouped them for this analysis. We also only included 
conifers in this analysis because of their greater abundance and our focus on conifer regeneration. 
We conducted the NMDS using the ‘vegan’ package (Oksanen et al. 2019) in R. We chose NMDS 
as opposed to a constrained ordination (e.g., canonical analysis of principal coordinates) because 
it performed better during data analysis, was a simpler procedure, and resulted in similar patterns. 

To translate the patterns we detected into geospatial predictions that are actionable by 
managers, we developed a web-based tool for predicting natural and post-planting seedling 
densities following new fires within our focal climate zone in the Sierra Nevada, subject to certain 
assumptions. The code and tool are hosted online at ‘https://reforestation.shinyapps.io/preset’. We 
identified post-fire shrub cover as an important predictor of seedling density (see Results), but 
because it is not known at the time of fire, we fitted an additional model to predict post-fire shrub 
cover (to in turn use as a predictor of seedling density) using only abiotic factors. 

Results and Discussion 
Results 

 Our selected models to predict tree density and species composition underscored the 
complex, multiple controls of recovering forest structure and composition. They included 
predictors representing climate, competition, dispersal, soil, and geophysical location (Table 3, 4). 
  

Predictor β std er p  
Table 4. Model 
estimates, standard error, 
and p-value for each term 
in the pine composition 
model. Continuous 
predictors were centered 
and standardized prior to 
fitting models to 
facilitate comparison of 
coefficients. 

β0 4.258 0.889 <0.00000 
Normal Annual Precipitation -0.800 0.248 0.00126 
%Forbs 0.381 0.232 0.10002 
Planting -4.767 0.820 <0.00000 
Year Planted -0.993 0.357 0.00534 
%Shrubs -0.839 0.269 0.00183 
Shrub Height -0.400 0.303 0.18679 
Overstory Canopy% -0.506 0.117 0.00002 
Topographic Water Index -0.408 0.183 0.02575 
Litter + Duff Depth 0.189 0.300 0.52928 
%Forbs:Planting -1.922 0.693 0.00556 
Year Planted:Planting 1.577 0.347 0.00001 
%Shrubs:Shrub Height -0.908 0.355 0.01041 
Litter + Duff Depth:Planting -0.713 0.322 0.02695 
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For tree density, the effect of climate was best explained by an interaction between 
minimum temperature and normal annual precipitation (βint.: p = 2.11×10-7) such that in the driest 
areas, tree density decreased with higher minimum temperature; at intermediate precipitation 
levels, tree density was independent of temperature; and in 
the wettest areas, tree density increased with temperature 
(Fig. 2). Tree planting did not interact with climate, 
suggesting that active planting increases tree density by a 
constant factor (relative to passive natural regeneration 
density) across climate gradients. For species composition, 
the proportion of pines occurring within plots decreased 
with normal annual precipitation and did not interact with 
planting (Fig. 3; p = 0.001).  

 Out of all the tested interactions between tree 
planting and environmental factors predicting tree density, 
only the interaction with shrub competition remained in the 
model. While the planting success depended on shrub 
cover, the number of years after fire that tree planting 
occurred determined whether shrub cover helped or hindered 
planting success. This was evidenced by a 3-way interaction 
between shrub cover, planting, and the number of years after 
fire that planting occurred (βint.: p = 0.042). In unplanted 
plots, tree density moderately decreased with shrub cover. 
But in planted plots, tree density sharply increased with shrub 
cover if trees were planted the year directly after a fire, tree 

Figure 2. Predicted effect 
of average annual minimum 
temperature (°C) and 
normal annual precipitation 
(mm) on seedling density. 
To visualize the interaction 
between average annual 
minimum temperature and 
normal annual precipitation, 
the relationship between 
seedling density and annual 
minimum temperature is 
shown at low (600mm), 
moderate (1200mm), and 
high (1800mm) 
precipitation. Average 
annual minimum 
temperature (°C) hello 

and normal annual precipitation (mm) did not interact with planting. All other factors in the model 
were held at their median value in the dataset. Back-transformed model predictions and standard error 
are shown. 

Figure 3. Predicted effect of 
normal annual precipitation (mm) 
on the proportion of species that 
are pines relative to all conifers. 
Normal annual precipitation did 
not interact with planting. All other 
factors in the model were held at 
their median value in the dataset. 
Model predictions and standard 
error are shown. 
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density moderately increased 
with shrub cover if trees were 
planted two years after a fire, 
and tree density increased 
moderately in the opposite 
direction as shrub cover 
decreased when planted three 
years after fire (Fig. 4 

For conifer species 
composition, the proportion of 
pines decreased with overstory 
canopy cover (Fig 5a; p = 
2×10-5). Shrub cover and 
shrub height interacted in the 
model, such that the 
proportion of pines declined 
with shrub cover but only 
when shrubs were tall (Fig 6; 
βint.: p = 0.01). Unlike tree 

density, shrub cover did not interact with planting to influence species composition; however, forb 
cover did interact with planting such that the proportion of pines naturally decreased with forb 
cover without planting, but when planting did occur, forb cover did not impact composition (Fig. 
5b; βint.: p = 0.0006). And while year planted interacted with shrub cover to affect seedling density, 
the year planted only interacted with planting such that the proportion of pines was lowest without 
planting and increased the most when planted the year after fire and decreased with time since fire 
(Fig 5c; p = 1.0×10-5). In addition to climate and competition, seed source and small-scale 

a) b) c) 

Figure 4. Predicted effect of shrub cover (%) and planting on 
seedling density for plantings one, two, and three years after fire. 
All other factors in the model were held at their median value in 
the dataset. Back-transformed model predictions and standard 
error are shown. 

 

Figure 5. The effect of (a) overstory canopy cover (%), (b) forb cover (%), and (c) number of years 
after fire when planting occurs on the proportion of species that are pines relative to all conifers. 
Canopy cover did not interact with planting, but forb cover and years after fire did. All other factors 
in the model were held at their median value in the dataset. Model predictions and standard error are 
shown. 
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environmental conditions were associated with tree seedling 
density. Tree density increased with proximity to a seed source (Fig. 7; p = 8.47×10-4) and with 
increased litter and duff depth (Fig. 8a; p = 5.66×10-4). Topographic position interacted with 
elevation such that at low elevation, elevated topographic position moderately increases tree 
density, but as elevation increases, a greater topographic position becomes associated with 
decreased tree density (Fig 8b; βint.: p = 1.47×10-3). For species composition, the proportion of 
pines was not affected by distance to seed source but did 
increase with topographic water index (Fig 9a; p = 0.026). 
The relationship of litter and duff depth with species 
composition depended on planting (βint.: p = 0.027). As 
litter and duff increased, the proportion of pines observed 
decrease; however, this relationship disappears, and the 
proportion of pines is greater overall when planting 
occurred (Fig. 9b). 

Without planting, stocking density targets (494 
seedlings/ha) were rarely met, except in the warmest, 
wettest sites when all other factors were held at median 
values (Fig. 2). Planting sharply increased seedling density, 
but rarely increased seedling density to common stocking 
density goals (Fig. 2–5). The effect of tree planting on 
species composition at the community level resulted in 
more similar communities, which included more pines; 
unplanted areas included a higher representation of shade 
tolerant species (Fig 10). 
 

Figure 6. The effect of shrub 
cover (%) and height (mm) on 
the proportion of species that 
are pines relative to all 
conifers. To visualize the 
interaction between shrub 
cover and mean shrub height, 
the relationship between shrub 
cover and the proportion of 
pines is shown at low (50cm), 
moderate (150cm), and high 
(250cm) shrub height. Shrub 
cover and height did not 
interact with planting. All 
other factors in the model were 
held at their median value in 
the dataset. Model predictions 
and standard error are shown. 

Figure 7. Relationship between 
minimum distance from a seed 
source (m) and seedling density. All 
other factors in the model were held 
at their median value in the dataset. 
Distance to seed source did not 
interact with planting. Back-
transformed model predictions and 
standard error are shown. 
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Discussion  
Our findings not only shed light on the biotic and environmental controls of tree seedling 

establishment and forest regeneration but also will help forest managers make more informed, 
cost-effective decisions to expand active tree planting as a tool to mitigate forest regeneration 
failure after large fires. As fires become more severe and the climate changes, understanding how 
the climate influences forest regeneration after large fires will be critical. Our results outline the 
climatic range in which tree planting will effectively increase regeneration. We also detail the 
complex relationship that planting success has with competition from shrubs and forbs. Our results 
suggest that areas with productive competing vegetation may be associated with failure of natural 
forest regeneration due to strong competition during the germination and early establishment 
stages. Forest managers can overcome the negative impact of intense shrub competition on 
regeneration by planting nursery-grown tree seedlings, thus bypassing the vulnerable germination 
and early seedling stages (Ledig and Kitzmiller 1992) and giving tree seedlings a head start in 
places where shrub competition is most intense. This strategy is only effective, though, when 
planting occurs the first or second year after a fire. If planting is performed more than two years 

Figure 8. The effect of 
(a) litter and duff depth 
(cm) on seedling 
density, and the effect 
of (b) topographic 
position on seedling 
density depending on 
elevation. To visualize 
the interaction between 
topographic position 
and elevation, the 
relationship between 
seedling density and 
topographic position at  

Figure 9. The effect of (a) litter 
and duff depth (cm), and (b) 
topographic water index, on the 
proportion of species that are 
pines relative to all conifers. 
Litter and duff depth did 
interact with planting, but 
topographic water index did 
not. All other factors in the 
model were held at their median 
value in the dataset. Model 
predictions and standard error 
are shown. 

low (1200m), moderate (1700m), and high (2200m) elevation is shown. Litter and duff depth, 
topographic position, elevation did not interact with planting. All other factors in the model were held 
at their median value in the dataset. Back-transformed model predictions and standard error are shown. 

a) b) 
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following fire, shrub competition can substantially impact seedling survival, and it may become 
difficult to reduce through shrub control treatments (yet more important to do so). Furthermore, 
planting early can increase the proportion of pines in the regenerating community as well as 
overcome forb competition with pines. In addition, our results align with an established body of 
literature that shows that natural forest regeneration is strongest near a seed source, and they 
reinforce the importance of planting in places that are far from seed sources (Welch et al. 2016, 
Shive et al. 2018). While it did not interact with tree planting, we demonstrate that the topography 
plays an important role elevation and topographic position limit seedling establishment in positions 
where water is scarce. 
 Climate plays a strong role in determining tree density after a burn. Unsurprisingly, water 
availability is often seen as the most important determinant of tree density (Potito and MacDonald 
2008). The interaction between normal annual precipitation and mean minimum annual 
temperature likely approximate water stress. Warmer areas require more water inputs to support 
tree densities to compensate for water loss from evapotranspiration. Tree seedlings with shallow 
roots are more sensitive to water loss, likely with mortality that tracks increased transpirational 
demand (Hanson and Weltzin 2000, Potito and MacDonald 2008). Surprisingly, we found that 

Figure 10. Conifer abundance-weighted community composition shown with non-metric 
multidimensional scaling (NMDS) using Bray-Curtis dissimilarity. All field plots were ordinated 
together but are displayed in separate panels for clarity. Species labels represent the centroid of that 
species in ordination space. Ellipses were calculated and drawn to encompass 80% of planted and 
unplanted ordination space. Stress = 0.13, k = 2. 
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active tree planting increases tree density by a constant factor across the precipitation and 
temperature gradients. This suggests that climate-related mortality likely occurs both at the earliest 
stages of recruitment (i.e., germination and early seedling establishment) and with more 
established seedlings (i.e., planted seedlings). This differential impact likely occurs because root 
establishment is critical for newly emerged seedlings and they are more sensitive to water stress, 
whereas planted trees have more established root systems and likely can extract deeper water to 
buffer against low rainfall and hot conditions (Hanson and Weltzin 2000, Potito and MacDonald 
2008). Although active tree planting increases seedling density most under the climatic conditions 
where passive natural regeneration is strong, planting in harsher sites where natural regeneration 
is weak (and where planting increases tree densities less) may nonetheless be necessary for 
managers to approach or achieve target seedling densities. Climate also impacted species 
composition. As normal annual precipitation increased, the proportion of pines decreased, perhaps 
underscoring a tradeoff between competition and resilience to water stress or an increase in 
available niche space for more shade tolerant species. Planting increased the proportion of pines 
overall but did not change the relationship between precipitation and species composition. 
 These results suggest that active planting in hot, dry areas can work to increase tree density, 
at least in the near term. Given that natural regeneration tends to be low in hot, dry areas—as 
multiple studies including this one have found (Stevens-Rumann and Morgan 2019)—managers 
may want to consider longer-term climate-driven shifts in forest cover and prioritize planting in 
locations where the projected future climate will support sustainable forest tree recruitment into 
the future (North et al. 2019, Stevens-Rumann and Morgan 2019). Hot, dry areas where natural 
conifer regeneration is poor may be transitioning to oak woodlands and shrublands typical of lower 
elevations, potentially making planting strategies to maintain mixed conifer forest in these areas 
cost-ineffective (White and Long 2019, North et al. 2019). Identifying where mixed conifer is no 
longer suitable is complicated, though, because poor natural seedling establishment can be a 
response to other anthropogenic factors. In particular, unnaturally large and severe wildfires—a 
consequence of past fire suppression—often catalyze type conversion to montane chaparral or 
other vegetation (Welch et al. 2016, Airey Lauvaux et al. 2016). Thus, in those cases of passive 
natural recruitment failure, active tree planting may serve its intended function of restoring forests 
that would otherwise naturally exhibit resilience to high-severity fire.  

At the same time, it is important to note that active tree planting in areas where passive 
natural regeneration is expected to be strong may not only represent a waste of resources: it may 
actually be ecologically counterproductive, producing dense stands with high tree-tree competition 
and elevated fire susceptibility (Kobziar et al. 2009, Zald and Dunn 2018). Thus, seeking to 
prioritize planting where it is most likely to bring naturally low seedling densities into an 
acceptable range is likely both ecologically and financially prudent. For instance, our results 
suggest that the warmest sites with relatively high precipitation may generally exceed stocking 
targets with passive natural regeneration alone, assuming a seed source is near (Fig 2.). 
 While active tree planting may produce a relatively constant proportional increase in 
seedling density across abiotic climatic gradients, our data show that understanding the balance 
between tree regeneration and shrub competition is critical for implementing successful tree 
planting. Naturally recruiting tree density declines as competition with shrubs increases (Welch et 
al. 2016). As a lifeform, shrubs resprout or germinate and grow more quickly and can therefore 
overtop tree seedlings, starving them of light and decreasing available soil moisture (Conard and 
Radosevich 1982, Lanini and Radosevich 1986, Oliver 1990, Plamboeck et al. 2008). Therefore, 
tree seedlings depend on growing conditions where shrub cover is not complete, and where tree 
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seedlings are provided an opportunity to overtop shrubs and outcompete or coexist with them. Our 
results suggest that forest regeneration (and plantation) failure can occur where tree seedling 
growth lags behind shrubs after fire. When trees were planted the year following a fire, planting 
dramatically increased tree density in the locations where shrub density ultimately would become 
high (i.e., indicative of fast shrub growth). Likely these areas provide ample resources for high 
productivity, which would support high tree seedling survival in the absence of shrubs; however, 
within natural systems, shrubs take advantage of these elevated resources more quickly than tree 
seedlings and outcompete them (Conard and Radosevich 1982, Lanini and Radosevich 1986, 
Oliver 1990, Welch et al. 2016). By planting trees in these areas early, managers give tree seedlings 
enough of a head start to establish, overtop shrubs, and survive. Therefore, the advantage of active 
tree planting in areas of high shrub productivity is strongest during the growing season after fire.  

Surprisingly, in low-productivity areas, planting increases tree density most strongly three 
years after a fire. This may suggest a facilitation effect of shrubs on tree seedlings, as has been 
observed in Spanish Mediterranean-climate forests (Castro et al. 2002, Gómez-Aparicio et al. 
2004) and dry sites in California (Callaway 1992). Given low shrub productivity at more stressful 
sites, tree seedlings may benefit from the effect of shrubs in moderating water loss by reducing 
wind and providing partial shade (Gómez-Aparicio et al. 2004, Irvine et al. 2009). Taken together, 
these results suggest that managers can take advantage of the tradeoff between competition and 
facilitation by adjusting the timing of planting. They will be most successful if they can predict 
where shrub cover (and thereby competition) will be greatest and target those areas for planting 
soon after a fire. In places where shrub growth is not vigorous, tree planting may actually benefit 
from waiting.  

Of the trees surviving shrub competition, pines tend to occupy locations with more 
available light. Overstory cover and tall shrub cover decrease available light thereby reducing site 
suitability for shade-intolerant species, including pines. Forb competition may not have impacted 
overall seedling density, but it can shift the composition of species toward more shade-adapted 
species, possibly by increasing shade during establishment. Importantly, this suppression of pines 
can be overcome with planting, which likely overcomes the impact of shading by forbs.  
 Dispersal limitation in large, high-severity burned patches strongly limits tree recruitment 
(Welch et al. 2016, Shive et al. 2018), yet active tree planting increases seedling density regardless 
of the distance to a seed source. This suggests that even planting trees close to surviving seed 
sources can meaningfully increase seedling density. Given the multiple factors and complexity of 
controls on seedling density, perhaps it is unsurprising, because even microsites close to a seed 
source can face other impediments to natural regeneration, such as intense competing vegetation. 
It is thus useful to know that even in these sites where seed rain is presumably abundant, 
establishment limitations can be overcome with active planting. The wide standard error around 
the effect of distance to seed source and the moderate complexity of our final model suggest that 
dispersal limitation is only a part of what limits tree recruitment in mixed conifer forest after severe 
wildfire. Furthermore, distance to a seed source did not affect composition. Given the differences 
in seed production, masting, size, and dispersal mode among conifers, the intensity of seed rain 
likely varies by species, which in theory, could translate to compositional differences with distance 
to a seed source. We did not, however, record distance to a mature individual for each species, and 
seed rain also depends on the abundance of the remaining tree species in addition to distance. It is 
possible that the effect of dispersal on species composition is more complex and requires more 
detailed data to elucidate dispersal-related patterns of composition. 
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 In addition to climate, competition, and dispersal, our results show how the physical 
environment influences recruitment, likely through how it impacts water availability. First, a 
thicker litter and duff layer (as measured 10 to 24 years post-fire) is associated with greater 
seedling density, perhaps as a correlate of increased site productivity. In contrast, greater litter and 
duff depth was associated with a smaller proportion of pines under natural regeneration, but 
planting eliminated that relationship. The mechanism behind these relationships is difficult to 
establish with these data because litter and duff depth were measured years after planting and are 
likely correlated with other factors that impact seedling survival and composition, such as site 
production, overstory tree density, and decomposition rates. Second, topographic position affects 
seedling density, but this effect depends on elevation. Topography provides fine-scale variation in 
water stress as valleys catch water, increase shade, and provide shelter relative to ridges (Emanuel 
et al. 2011, Hoylman et al. 2018).  Yet, variation at larger scales across elevation can change the 
relationship between topography and productivity (Hoylman et al. 2018). Thus, topography and 
elevation set the stage to determine seedling establishment, perhaps by controlling productive and 
stressful growth environments. Similarly, the proportion of pines decreased with topographic water 
index, which approximates soil water availability based on topographic position. As topographic 
water index increases, water availability likely increases, allowing more shade-tolerant species to 
establish and decreasing pine relative abundance. Overall, these results suggest managers should 
consider how the small-scale effects of topography are modulated by larger-scale changes in 
elevation and how this complex interaction guides the tradeoff between productivity and 
competition. 

Conclusions 
 Ultimately, climate and soil interact to control establishment, survival, and growth of plants 
in the Sierra Nevada primarily through water limitation; however, biotic interactions strongly 
influence whether the dominant life forms will be trees or shrubs after a wildfire. Understanding 
how to shift the balance between trees and shrubs will be critical for implementing successful 
forest restoration and useful for prioritizing sites with limited resources. We recommend that 
managers prioritize planting tree seedlings the year after fire in the most productive locations, 
where shrubs will grow quickly and outcompete seedlings. Planting early also has the greatest 
impact on increasing representation of pines during forest regeneration. The web-based tool that 
we developed based on our results will help managers to prioritize the timing and locations of 
active plantings to increase reforestation efficiency following future wildfires. 
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Sorenson, Q. M., Young, D. J. N., Latimer, A. M. “Tree planting outcomes after severe wildfire 
depend on climate, competition, and priority: where competition with shrubs is intense, 
trees need a head start.” In Review at Ecological Applications. 
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Young, D. J. N., Sorenson, Q. M., Latimer, A. M. 2019. Active and passive post-fire restoration 
under changing environmental conditions. Association for Fire Ecology 8th International 
Fire Ecology and Management Congress. 

 

Sorenson, Q. M., Young, D. J. N., Latimer, A. M. 2020. Tree planting the year following high 
severity wildfire gives tree seedlings a critical head start when competition from shrubs is 
intense. Ecological Society of America Annual Meeting. 

 

Sorenson, Q. M., Young, D. J. N., Latimer, A. M. 2020. Where and when to plant trees after fire 
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Sorenson, Q. M., Young, D. J. N., Latimer, A. M. 2020. Environmental drivers of reforestation 
outcomes: field-based observations and a web-based tool for prioritizing planting. 
California Fire Science Consortium. 

 
Tool 
 

Young, D. J. N., Sorenson, Q. M., Latimer, A. M. 2020. Post-fire Reforestation Success 
Estimation Tool (PReSET). https://reforestation.shinyapps.io/preset/  
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Appendix C: Metadata 
 

The data collected through this project reflect the biophysical characteristics of 212 11.3 
m radius circular plots that were surveyed following wildfires that burned in yellow pine and 
mixed-conifer forests in the Sierra Nevada of California. It includes plot-level variables 
representing vegetation attributes (e.g., percent cover by shrubs, density of tree seedlings, and 
distance to seed trees), abiotic attributes (e.g., temperature, precipitation, and solar radiation), 
and plot status/information (e.g., fire name, pair ID, identity as planted or unplanted). The dataset 
is accompanied by metadata following the “FGDC Biological Data Profile” standard of the 
Content Standard for Digital Geospatial Data (FGDC-STD-001.1-1999). The data and metadata 
will be archived in the Dryad Digital Repository upon publication of a peer-reviewed paper 
presenting the data. 

 
 
 
 
 
 


